Product image selection
To run any product on the Stackable Data Platform, you need to specify which version you want to run in the resource definition (i.e. a SparkApplication or DruidCluster). The simplest way to do this is this:
spec:
image:
productVersion: 1.2.3 (1)
# stackableVersion: 24.3.0 optional (2)
1 | The version of your product - consult the product operator documentation to find out about supported product versions. |
2 | The version of the Stackable Data Platform. If you omit it, the operator will use it’s own version together with the product version to select the product image. |
This page explains the different ways of specifying product images and the components that are involved, starting from the simple way of using the default images to explaining how to use custom or mirrored registries as well as custom images.
Product and Stackable version explained
All products of the Stackable Data Platform run on Kubernetes and are managed by Stackable Operators. One operator is responsible for exactly one product, for example Apache Spark, but can manage multiple instances (with different versions) of the product at the same time. The operators transform a Stacklet definition (for example a SparkApplication object) into Kubernetes native objects. Some of these objects are Pods and they require container images to run. These images contain different tools for initialization jobs and/or the actual product itself and the images are version and architecture specific.
Stackable uses two separate versions to describe the images that are provided as part of the platform:
Product version
This is the version of the product which this image provides, so this could for example be Kafka 3.3.1.
You can find all products and their supported versions in the supported versions overview. You can also find the supported versions per product on each operator page, for example for Apache Kafka. New versions, deprecations and removals are announced in the release notes. |
Stackable version
This version is used to track changes to the structure of the image containing the product (in the version specified by product version).
Stackable operators expect to find a very specific structure in the images they use to roll out the products.
This can be things like startup scripts being present, parameters these startup scripts expect, presence or location of extra libraries and similar things.
In order for our operators to work as intended every operator has to be used with images from the same release line as this operator.
What this means is, that for example the Stackable Operator for Apache HBase will by default try to use images with the same Stackable version, the following table shows a few examples to make this clearer:
Operator version | HBase version | Image |
---|---|---|
23.4.0 |
3.3.0 |
hbase:3.3.0-stackable23.4.0 |
23.4.0 |
3.3.1 |
hbase:3.3.1-stackable23.4.0 |
23.7.0 |
3.3.0 |
hbase:3.3.0-stackable23.7.0 |
23.7.0 |
3.3.1 |
hbase:3.3.1-stackable23.7.0 |
However, since the last digit of the Stackable version is considered to be a patch level indicator, operators will be compatible with all images from the same release line. So an operator of version 23.4.x will be compatible with all images of version 23.4.y. This is intended to allow shorter update cycles for users, when new image versions are released that may contain security fixes.
The following paragraphs explain the available settings and how they work.
At the bottom of this page in the common scenarios section some common update scenarios are explained as examples.
Stackable provided images
If your Kubernetes cluster has internet access, the easiest way is to use the publicly available images from the Image registry hosted by Stackable (as has been noted at the beginning of the page):
spec:
image:
productVersion: 3.3.1 (1)
# stackableVersion: 23.7.0 # optional (2)
1 | The version of your product - consult the product operator documentation to find out about supported product versions. |
2 | The version of the Stackable Data Platform - simply omit this to use the operator version. |
If the Kubernetes cluster does not have internet access, a Custom docker registry or Custom images can be used. |
You only need to specify the product version but can also specify an explicit Stackable version. the product version can be found on the list of supported product versions or on the product operator documentation page.
As images should be updated from time to time (e.g. new base image, security updates), a Stackable version can be provided.
An image with the Stackable version 23.7.0
is fixed and will never change.
Security updates within a release line will result in patch version bumps in the Stackable version to e.g. 23.7.1
.
If you don’t specify the Stackable version, the operator will use its own version, e.g. 23.7.0
.
When using a nightly operator or a pr
version, it will use the nightly 0.0.0-dev
image.
All the available images (with their product and stackable version) can be found in our docker repository.
Custom docker registry
Custom docker registries can be used to fetch the image from a local image registry rather than from the internet. The perquisite is that you mirror all the required images the same way (with the same name and tag) as the images provided by Stackable.
Afterwards you can use the following snippet to configure your custom docker repo:
spec:
image:
productVersion: 3.3.1
stackableVersion: 23.7.0
repo: my.corp/myteam/stackable
This will change the image from the default Stackable repository docker.stackable.tech/stackable/kafka:3.3.1-stackable23.7.0
to my.corp/myteam/stackable/kafka:3.3.1-stackable23.7.0
.
Custom images
Custom images can be used to fetch arbitrary images from local or public registries. In comparison to the Custom docker registry, this allows to provide self-hosted or user-created images (e.g. user extended Stackable images). If your image has other tags or names than the ones provided by Stackable you need to use this option.
spec:
image:
custom: my.corp/myteam/stackable/kafka:latest-and-greatest
productVersion: 3.3.1
Even though the product version is not used anymore for image selection, you still need to provide it, as the operators configure their respective products based on the product version. This affects e.g. configuration properties or available product features. Only when the correct product version is given to the operator, the product will work correctly, so you need to provide the product version that you have used in your custom image.
Using custom images has a few limitations that users should be aware of:
-
The images will have to have the same structures that Stackable operators expect. This should usually be ensured by specifying a Stackable image in the
FROM
clause of the Dockerfile (all the available images can be found in our docker repository - the schema is typically:docker.stackable.tech/stackable/<product>:<product-version>-stackable<stackable-version>
). -
Images will have to be upgraded for every new Stackable release to follow structural changes that Stackable may have made to their images. When deriving images from official Stackable images this will mean updating the version of the image in the
FROM
clause to the correct Stackable release. -
It is not possible to update the Stackable Platform to a new version without changing the deployed cluster definitions when using custom images. The recommended process here is:
-
Set
reconciliationPaused
totrue
in your product cluster (see Cluster operations) -
Update Stackable platform
-
Change custom images in cluster specifications
-
Set
reconciliationPaused
tofalse
again to start reconciliation again
-
Common Scenarios
Planned platform updates
This is probably the most common scenario, users do not specify a Stackable version, and thus the operators always pick the image from their exact release. Updates happen by updating Stackable Operators, which will in turn restart the products with the new images.
Custom images / pinned images
When a setup requires the utmost stability, and it is preferable for things to break, rather than run with a different image version that for example has not been certified. Or when a user requires custom libraries / code in the images they run and build their own images derived from official Stackable images, this is the only possible way to do this.
Please see the warnings in custom images section above for how to upgrade in this scenario.